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Abstract. We describe Slate, a logic-based, robust interactive rea-
soning system that allows human “pilots” to harness an ensemble of
intelligent agents in order to construct, test, and express various sorts
of natural argumentation. Slate empowers students and profession-
als in the business of producing argumentation, e.g., mathematicians,
logicians, intelligence analysts, designers and producers of standard-
ized reasoning tests. We demonstrate Slate in several examples, de-
scribe some distinctive features of the system (e.g., reading and gen-
erating natural language, immunizing human reasoners from “log-
ical illusions”), present Slate’s theoretical underpinnings, and note
upcoming refinements.

1 INTRODUCTION
Slate is a robust interactive reasoning system. It allows the human
“pilot” to harness an ensemble of intelligent agents in order to con-
struct, test, and express natural argumentation of various sorts. Slate
is designed to empower students and professionals in the business
of producing argumentation, e.g., mathematicians, logicians, intel-
ligence analysts, designers and producers of standardized reasoning
tests, and so on. While other ways of pursuing AI may well be prefer-
able in certain contexts, faced with the challenge of having to engi-
neer a system like Slate, a logic-based approach [9, 10, 18, 31, 13]
seemed to us ideal, and perhaps the power of Slate even at this point
(version 3) confirms the efficacy of this approach. In addition, there
is of course a longstanding symbiosis between argumentation and
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logic revealed in contemporary essays on argumentation [48]. In this
paper, we summarize Slate through several examples, describe some
distinctive features of the system (e.g., its capacity to read and gener-
ate natural language, and to provide human reasoners with apparent
immunity from so-called “logical illusions”), say a bit about Slate’s
theoretical underpinnings, and note upcoming refinements.

2 A SIMPLE EXAMPLE
We begin by following a fictitious user, Ulric, as he uses Slate to
solve a short logic puzzle, the Dreadsbury Mansion Mystery [34]:2

Someone who lives in Dreadsbury Mansion killed Aunt Agatha.
Agatha, the butler, and Charles live in Dreadsbury Mansion, and are
the only people who live therein. A killer always hates his victim, and
is never richer than his victim. Charles hates no one that Aunt Agatha
hates. Agatha hates everyone except the butler. The butler hates every-
one not richer than Aunt Agatha. The butler hates everyone Agatha
hates. No one hates everyone. Agatha is not the butler. Who killed
Agatha?

Information can enter Slate in a number of formats, e.g., as for-
mulae in many-sorted logic (MSL), or as sentences in a logically-
controlled English (§4.2). Information can also be imported from
external repositories such as databases or the Semantic Web (§4.5).
Ulric examines the Dreadsbury Mansion Mystery facts displayed in
Slate’s workspace (Figure 1).

Figure 1. The Dreadsbury Mansion Mystery facts represented in Slate.

A fan of murder mysteries, he considers whether conventional wis-
dom might hold true, i.e., that the butler did it. Ulric adds the hypo-
thetical to Slate’s workspace and asks Slate to check whether the
hypothesis is consistent with the other propositions. Slate quickly re-
ports an inconsistency (Figure 2).

2 This puzzle is of a type typically used to challenge humans (e.g., stu-
dents in introductory logic courses) and machines (e.g., automated theorem
provers).



Figure 2. A murderous butler is inconsistent with the premises.

At this point, Ulric suspects that Charles must have killed Agatha,
although he recognizes that he hasn’t envisioned a detailed argument.
He adds to the workspace the hypothetical that Charles killed Agatha,
and asks Slate if it can prove Charles’ guilt from the given facts.

Slate’s response surprises Ulric: Not only was Slate unable prove
Charles’ guilt, but the system generated a countermodel! Of course,
Ulric realizes, the existence of a countermodel means that Charles
isn’t implicated deductively, but there still might be, for example,
an abductive or inductive indictment. Ulric decides to examine the
countermodel that Slate found (Figure 3).

Agatha KilledHates

The Butler

Richer Than

Charles

Hates Richer Than

Hates

Hates Richer Than Hates

Figure 3. The countermodel casts reasonable doubt on Charles’ guilt.

Slate depicts the countermodel as a directed graph, where binary
relations between people are denoted by labeled arcs between them.
For instance, that Charles hates the Butler is shown by the arc from
Charles to The Butler labeled Hates.

What Ulric finds interesting, though, is not that the Butler hates
Charles, but that in the countermodel, Agatha killed herself, i.e., it
was a suicide. Ulric knows that when Slate finds a countermodel,
the facts expressed therein aren’t necessarily entailed by the selected
propositions, but rather are mutually consistent. Until this point, he
had tacitly presumed that either Charles or the Butler killed Agatha,
and now he realizes that this presumption isn’t yet warranted. Ul-
ric decides to investigate the hypothesis that Agatha killed herself,
based on the logical possibility that she did, and asks Slate if the new
hypothetical can be proven (Figure 4).

Slate responds that there is a deductive proof that Agatha commit-
ted suicide. At this point, Ulric either examines the natural-deduction
style proof that Slate found, or begins his own investigation. Eventu-
ally he builds an argument at the level of detail he desires (Figure 5).
This argument is mechanically certified by Slate, indicating the logi-

Figure 4. The model suggests the hypothesis of Agatha’s suicide.

cal validity of each inference made therein.

3 THEORETICAL FOUNDATIONS
Slate is based on a robust, multi-faceted theory of heterogeneous hu-
man and machine reasoning—a theory that affirms the importance
of deductive, inductive, abductive, analogical, and visual reason-
ing; arguments and counter-arguments; proofs and disproofs; mod-
els and counter-models; and strength factors (in the tradition of
Chisholm [15] and Pollock [37]) that force explicit declarations of
reliability in source and provenance information. This theory should
in no way be confused (let alone be conflated) with limited, prior
theories of argumentation and argument mapping, e.g., those based
on Toulmin’s The Uses of Argument [47]. As an immediate corol-
lary, note that Slate is radically different than all software systems
based on such prior theories. From the standpoint of education and
training, Slate is based on a neo-Piagetian view of the development
of bias-free human reasoning, according to which, given sufficient
training, neuro-biologically normal humans can reason (deductively,
and in other modes as well) in normatively correct, bias-free fash-
ion [8, 39].

Slate’s purpose is to facilitate and amplify its users’ “System 2”

Figure 5. A detailed deductive argument proving Agatha’s suicide.



cognitive abilities. As Stanovich & West [45] explain, evidence ac-
cumulated over a number of decades strongly supports the view that
there are two cognitive systems at play in the human mind: “Sys-
tem 1” and “System 2.” Reasoning performed on the basis of Sys-
tem 1 cognition is bound to concrete contexts and is prone to er-
ror; reasoning on the basis of System 2 cognition “abstracts com-
plex situations into canonical representations that are stripped of
context” [45], and when such reasoning is mastered, the human is
armed with powerful techniques that can be used to handle increas-
ingly complex challenges that the modern, symbol-based market-
place presents.

Of course, if Slate is to amplify human cognitive abilities, it must
embrace the diverse mechanisms of human reasoning. Humans ap-
parently sometimes reason via “mental logic” [40, 6] (the manipu-
lation of purely linguistic entities, e.g., logical formulae), and some-
times by imagining and manipulating non-linguistic “mental mod-
els” [25, 41] of possible situations. Further, as brain studies now in-
creasingly confirm (see e.g. [19, 14]), they also sometimes reason in a
fashion involving mental logic, mental models, and meta-reasoning
over the structures and inference rules of the two prior theories (a
process that cannot be captured by either prior theory). This kind
of heterogeneous reasoning (explored, e.g., in the theory of mental
meta-logic [50, 51, 53, 52]), is the impetus for State’s use of proof-
and model-theoretic argumentation (and soon, argumentation unify-
ing symbolic and visual information, see §7).3

Slate is an interactive system, and must not only draw correct con-
clusions according to these aforementioned theories, but must also
hold to cognitively plausible theories of inference. For example, epis-
temic theories are, by and large, built on logics of possibility and
necessity and interpreted according to Kripke semantics. Undoubt-
edly, a person’s response, when asked why they hold some particular
belief, will not include a description of an accessibility relation par-
titioning all possible worlds, but rather an articulation of some argu-
ment for their belief—perhaps even one with explicit assignments of
strength to evidence and inferences. Given that Slate must be able to
evaluate such justification, its epistemic theory must be cognitively
plausible, based on a heterogeneous system of defeasible argumenta-
tion, where validity, veracity, and inferential and evidentiary strength
are the basis for justified belief and knowledge.

4 COMPONENTS AND FEATURES
4.1 Visual Interface
It may be surprising that Slate, a system ultimately grounded in
formal logic, is inherently visual; logics, with exceedingly rare ex-
ceptions, have been non-visual since the first one arrived on the
scene 300BC, courtesy of Aristotle. But Slate is a system for
argumentation—specifically, a system to assist in argumentation—
and has therefore adopted a representation that subsumes and ex-
ceeds argument-mapping technologies, e.g., Toulmin’s work [47]4

3 For in-depth discussion of the aforementioned psychological theories, and
their relation to logical systems, see [13]. Please note that proponents of
these psychological theories of human reasoning generally view them as
entirely incompatible. From the standpoint of formal logic and mathemat-
ics, such incompatibility appears exceedingly implausible, for the simple
reason that in these fields human reasoners make conscious, explicit use of
rules of syntactic/proof-theoretic inference, and diagrams that depict pre-
cisely the kind of visuo-spatial objects Johnson-Laird believes are at the
very heart of human reasoning. Empirical evidence of such heterogeneous
reasoning can be found on the pages of any number of journal articles and
textbooks in these fields.

4 Of course, a visual interface per se isn’t novel. After all, Toulmin’s scheme
is diagrammatic. But Slate’s workspace includes not just a visual represen-

and Rationale5 (Figure 6). The basic construct of the Slate workspace
is a proposition or hypothesis, representing an individual fact or state-
ment. An argument in Slate is a tree-like structure with the ultimate
conclusion as its root and initial premises at the leaves. Non-leaf
nodes within arguments are supported by an inferential link connect-
ing the node (conclusion) to its children (premises).6 Each inference
can indicate the mode of reasoning under which the conclusion is
supported by the premises. Reasoners may construct sub-arguments,
in which new hypotheticals are introduced and temporarily supposed
true.

Of course, humans also reason visually about models (i.e., possi-
ble states of the world), and process diagrammatic information such
as maps, charts, and graphs. Slate incorporates models and coun-
termodels into arguments. Presently these elements are visualized
as digraphs (Figure 3), but more sophisticated visual representa-
tions (such as the aforementioned maps, diagrams, charts, plots) are
planned for the future, using “visual-logics,” such as Vivid.7

Figure 6. A simple argument map in Rationale.

4.2 Linguistic Interface
Though there are many benefits to working in a formal logic, most
human reasoning and argumentation is performed at the linguistic
level. Information is usually represented textually, arguments are pre-
sented in (perhaps structured) prose, and reasoning is justified in nat-
ural language. Many of Slate’s users do not have mastery of for-
mal logic, and so Slate accepts information expressed in logically-
controlled English, a subset of English that can be unambiguously
translated into a formal logic. The process by which this occurs has
three phases [7] (Figure 7):
Phase 1: English texts are rephrased in logically-controlled English. Slate

makes use of ACE [17, 22] and CELT [32, 33], each of which is a
logically-controlled English with a fixed, definite clause grammar and al-
lows user-defined vocabularies.8

tation for inferential links between propositions, but also: visual depictions
of models, relational databases, ontologies, and so on.

5 Rationale (Austhink Software Pty Ltd., 2006–2007) is an argument dia-
gramming software system.

6 We use “children” in the typical graph-theoretic fashion, but atypical of
directed graphs: arrows here point from children to parents.

7 See http://kryten.mm.rpi.edu/Vivid.pdf.
8 Phase 1 is currently performed by the user, but techniques are in devel-

opment, and proposals under review for funding, to automate this phase
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Phase 2: Discourse representation structures (DRSs) are automatically gen-
erated from the controlled English. DRSs are a syntactic variant of first-
order logic for the resolution of unbounded anaphora. Their use in the
interpretation of text is a central element of discourse representation the-
ory [27, 28].

Phase 3: The DRSs are automatically translated [29] into MSL, the chief
native language of Slate. As a DRS is equivalent to a quantified first-order
formula, translations [3] to first-order logic and MSL are not conceptually
difficult.

Full English Text

Transcription
(informed by Lexicon Database)

Controlled English

Discourse Representation 
Structures

Translation
(informed by Semantic Ontology)

Many-Sorted Logic

Controlled English

Translation
(informed by Lexicon Database)

Discourse Representation Structures

Phase One Phase ThreePhase Two

Figure 7. Slate’s natural language understanding process.

Slate also presents arguments linguistically. Slate builds English
justifications from arguments in the workspace, and from machine-
generated proofs. Arguments and natural deduction proofs are al-
ready poised for efficient translation into English. They require no
further document structuring or content determination.9

Slate’s natural language generation system decomposes a proof or
argument into constituent subproofs, translating each subproof from
the top down. Once a subproof is translated, it is sent to a micro-
planning system that maps subproofs to discourse relations [23].
Though the overall structure of the proof or argument must remain
the same, this restriction is not imposed on subproofs, which are
molded and fitted to a number of different discourse relations and
rhetorical structures for the sake of fluidity (e.g., redundancy check-
ing, referring expression generation). In this fashion, Slate typically
generates well-structured, expressive expositions.10

4.3 Reasoning Technology
Though human reasoners are superb at concurrently employing many
different reasoning techniques (i.e., at heterogeneous reasoning), and
are creative, they are also susceptible to bias and cognitive illusions.
Human reasoners are also limited by the size of working memory,
and so find it extremely difficult to keep large argument structures
consciously in mind,

Machine reasoning systems, then, are a perfect complement to
the human reasoner. Though a machine reasoning currently lacks
creativity and is often limited to one mode of reasoning, computer
memories and processors are vast and fast, making machine reason-
ing systems excel at the mechanical, brute-force reasoning tasks that
their human counterparts find so difficult and tedious.

Slate harnesses these strengths by incorporating some of the best
machine reasoning systems available, such as theorem provers and
model finders. We describe three ways in which Slate exploits ma-
chine reasoning systems:
Argument checking: An inference in Slate is tagged with a rule or rea-

son that justifies that inference. These individual inferences are checked
for correctness using Athena [1], a type-Ω Denotational Proof Language

as well [30, 5, 4]. Expertise presently needed in order to accomplish the
rephrasing in question must include thorough knowledge of the syntax of
ACE/CELT. Typically, the challenge is to preserve meaning while sacrific-
ing sophisticated tense and model content.

9 That is, document planning [38] is prima facie complete.
10 Nonetheless, predictably, we have not yet reached the point at which the

elegance of informal proofs typical of journals in the formal sciences is
present in Slate-generated English.

(DPL) [2]. DPLs allow Slate to the application of rules with fine gran-
ularity. DPLs allow users of Slate to define new rules and reasons. This
technique is useful in abbreviating common inference sequences, and for
domain-specific reasoning.

Proof search: Slate uses two resolution based reasoners for proof search:
SRI’s SNARK, a multi-sorted reasoning kit implemented in Lisp; and OT-
TER [49], a single-sorted prover written in C. Pollock’s OSCAR [37] is also
used to find natural deduction proofs that are suited for human consump-
tion.

Model finding: Slate finds models with PARADOX [16], a model finder that
won the SAT/Models class in the 2003 CASC. Paradox finds finite models
which are rewritten in AT&T’s dot language which GraphViz renders as
a visual model (e.g., Figure 3).

The benefits of these systems are great, yet most argument map-
ping systems seem to lack the features that machine reasoning sys-
tems provide. For instance, the argument mapped in Rationale in Fig-
ure 6 is a cognitive illusion.11 In Slate, a counterexample would be
generated that shows the possible state wherein all Frenchmen are
wine drinkers, but the only gourmets in the room are non-French
wine drinkers (Figure 8). For an algorithm able to decide whether or
not any syllogism is valid, see [12].

Figure 8. Slate reveals the illusion in Figure 6’s argument.

4.4 Uncertainty & Strength Factors

Human reasoners often speak in what may initially appear to be the
language of probability theory. We say that one outcome is “more
likely” than another, that some occurrence “isn’t likely,” that evi-
dence is “fairly reliable,” and that a conclusion is “beyond reason-
able doubt.” Yet psychological research confirms (e.g. see [26]) that
human cognition is not based in probability theory. Slate reflects our
belief that such phrases as those just quoted reflect strength factor-
based reasoning, in which propositions and arguments are tagged
with strengths from a discrete nine-point spectrum ranging from

11 This particular illusion is known as the “wine drinker” illusion, introduced
in [24]. Please note that abduction is not applicable in this problem, as the
task is to determine whether the conclusion in question must be true if the
premises are. As is well-known, to enforce the need for correct reasoning
on the part of subjects faced with reasoning problems, one need only in-
quire as to whether a purported conclusion is logically necessitated by the
premises in question.



‘Certainly False’ to ‘Certain,’ and that includes the terms ‘Beyond
Reasonable Doubt,’ ‘Probable,’ and ‘Counterbalanced.’

Strength factors are applied manually to individual inferences and
to propositions that are not the conclusion of any inference. Strength
factors are then propagated through the entire argument structure.
This regulated use of strength factors in Slate helps users to pinpoint
weak points in complex arguments, and allows them to focus their
efforts effectively.

4.5 Interoperability

Slate’s practical usefulness is greatly enhanced by virtue of interop-
erability with external data-stores (e.g., knowledge-bases, databases)
and analytical tools. Slate achieves this through provability-based
semantic interoperability (PBSI) [46, 43], a framework designed
to facilitate information exchange between fundamentally different
knowledge-management systems, provided only that there is some
meaningful (i.e., semantic) relationship between the information
in the systems’ data-stores. Various standards and languages (e.g.,
XML) have been used for syntactic interoperability, but until PBSI
there had been no general method for semantic interoperability. PBSI
is designed to exchange not only information that is differently struc-
tured (e.g., XML, relational databases, text files), but knowledge that
differs semantically.

PBSI includes a language for bridging axioms that formalize the
relationships between ontologies. An extension, PBSI+, associates
with each information exchange a proof certifying the conserva-
tion of meaning. Translation graphs build bridges between ontolo-
gies that preserve semantics. A translation graph is a directed graph
whose vertices are ontologies, and whose edges are atomic axiomatic
relationships between ontologies (Figure 9).

C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

D

Sorts: Number, Person Functions: Owns

Sorts: Number, Person Functions: Owns, Owner

(add-function Owner
  (iff (= x (Owner y))

    (Owns x y))))

Sorts: Number, Person Functions: Owner

(remove-function Owns)

(add-function Phoned)

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Sorts: Person Functions: CalledBy, Called

(remove-functor CalledBy)

B

Sorts: Person Functions: CalledBy

(add-functor Called
  (iff (Called   x y)
       (CalledBy y x)

Figure 9. A translation graph generates the axioms facilitating semantic
interoperability between four ontologies.

The framework and corresponding implementation of PBSI signif-
icantly reduces the work required for semantic interoperability, and
partially automates the process.12 PBSI has enabled interoperability

12 Currently, PBSI is semi-automated. Work is underway on a full automation,
but the task is sobering, since such automation will require considerable
progress in an area of AI and computer science that has been stalled since
its inception: automatic programming. Bringsjord & Arkoudas currently
have an exploratory grant from NSF to explore this direction.

between Slate and a number of commercial and academic analytical
declarative representation schemes (e.g., SQL, Common Logic (now
an ISO standard), and OWL).

5 EXAMPLES
The initial example (§2) showed some of the capabilities of Slate
(e.g., model finding, inference validation), but glossed over the con-
struction of the final argument (Figure 5). We now present two ex-
amples that highlight the process of building arguments in Slate. The
first example is strictly formal, and motivated by well-known results
that have not yet been formalized and mechanically validated; the
second recreates an argument from Sherlock Holmes.13 But before
presenting the pair of examples, a note on the centrality of deductive
reasoning.

5.1 The Centrality of Deductive Reasoning
Slate is designed to assist human reasoning in all its established
modes (deductive, inductive, abductive, etc.). Nonetheless, in the
present paper, space doesn’t allow coverage of all these modes—and
not only that, but deduction, it must be conceded, gets top billing
herein. Why is that? There are a number of reasons; we give four.

First, while it’s easy enough for humans to articulate exclusively
deductive reasoning (e.g., in published proofs in logic, mathemat-
ics, computer science, etc.), it is well nigh impossible for humans
to produce high-quality argumentation that is exclusively in a non-
deductive mode, that is, argumentation without, at least in part, em-
ploying deduction. For example, opinion pieces in newspapers ap-
pear daily in the tens of thousands across the globe, and each and
every one makes use of deduction; perhaps not extensive use, but use
nonetheless. Second, while there is no consensus as to what valid
(say) inductive reasoning is, there is universal agreement that cer-
tain patterns of deductive reasoning (e.g., modus tollens, proof by
cases, etc.) provide a canonical standard for valid deductive reason-
ing. Third, since some entire disciplines are based on deduction (e.g.,
computer science, based on deductive logic; see e.g. [20]), and since
we wish Slate to be useful to practitioners in these fields, deduc-
tion is important to us. Fourth and finally, it is natural that emphasis
be placed upon deductive reasoning, for the simple reasoning that
children in the civilized world are premeditatedly exposed to deduc-
tion (and expected to learn certain elementary forms of it) in K–12
mathematics education. By contrast, while in such education explicit
coverage of deduction is often mandated (e.g., in the United States,
some states, e.g., New York, require students to be explicitly taught
deductive logic from first grade on), such is never the case, as far as
we know, for induction, abduction, analogical reasoning, and so on.

5.2 Formal Reasoning
Gödel’s first incompleteness theorem (GI), one of the most cele-
brated results in mathematical logic, states that any consistent, for-
mal, recursively enumerable theory (e.g., a first-order logical sys-
tem) that proves basic arithmetical truths cannot prove all arithmeti-
cal truths [21]. This result is often difficult to accept upon initial ex-
posure, and we attribute this incredulity to: (i) the novelty and inge-
nuity of Gödel’s proof, and (ii) the counter-intuitiveness of his result.
Following in the pedagogical tradition of Smullyan [44], we present

13 More demonstrations and examples are available from the Slate website,
http://www.cogsci.rpi.edu/slate/, and demonstrations page, http:
//www.cogsci.rpi.edu/slate/demos.
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a Gödelian logic puzzle that approximates GI and demonstrates the
power of Slate within demanding logico-mathematical domains like
those in which Gödel worked.

A Precursor Gödelian Puzzle. Suppose a machine M operates
on expressions: finite, non-empty sequences of the four glyphs ∼,
?, P, and M. These four glyphs have intuitive meanings: ∼ stands
for ‘not,’ ? for ‘to be’ or ‘is,’ P for ‘provable,’ and M for ‘mirror
of,’ where the mirror of an expression φ is the expression φ ? φ. A
sentence is an expression of a particular form, also with an intuitive
meaning, specifically,

P ? φ means that φ is provable and is true if and only if φ is provable by
M .

PM ? φ means that the mirror of φ is provable, and is true if and only if
the mirror of φ is provable by M .

∼ P ? φ means that φ is not provable, and is true if and only if φ is not
provable by M .

∼ PM ? φ means that the mirror of φ is not provable, and is true if and
only if the mirror of φ is not provable by M .

M is such that it only proves true sentences and never false sen-
tences (i.e., the machine is sound). Prove that M cannot prove all
true sentences—there is a true sentence which cannot be proved by
M (i.e., the machine is incomplete).

Formalization of the Gödelian Puzzle. We formalize the above
puzzle as a logical language consisting of the constants: ∼, ?, P, M;
the (unary) predicates: glyph, expression, sentence, provable, and
true; and the functions: cat (concatenation), and mirror. For conve-
nience, we describe as glyphs, expressions, sentences, provable, and
true any terms on which glyph, expression, sentence, provable, and
true holds, respectively, and denote the application of cat to two
terms φ and ψ as the concatenation of φ and ψ, or by φψ, and the
application of mirror to a term φ as the mirror of φ. The interpretation
of this vocabulary is subject to the following twelve axioms:

1. The constants ∼, ?, P, and M are each distinct.

2. The constants ∼, ?, P, and M are the only glyphs.

3. The concatenation of two terms is an expression if and only if both terms
are themselves expressions.

4. Concatenation is associative.

5. The term φ is an expression if and only if φ is a glyph or is the concatena-
tion of two expressions.

6. The mirror of an expression φ is defined as the concatenation of φ, ?, and
φ (i.e., φ?φ).

7. If φ is an expression, then P ? φ, PM ? φ, ∼ P ? φ, and ∼ PM ? φ are sen-
tences.

8. If φ is an expression then the sentence P ? φ is true if and only if φ is
provable.

9. If φ is an expression, then the sentence PM ? φ is true if and only if the
mirror of φ is provable.

10. If φ is an expression, then the sentence∼ P?φ is true if and only if φ is not
provable.

11. If φ is an expression, then the sentence ∼ PM ? φ is true if and only if the
mirror of φ is not provable.

12. Every sentence φ that is provable is also true.

The given axioms (propositions 1–12) are represented visually in
the Slate workspace in Figure 10), each consisting of the first-order
formula derived from the English descriptions above. Moreover, a
new intermediate hypothesis is introduced toward the desired goal,
viz., that there is a true sentence that cannot be proved by M :

13. ∼ PM is an expression.

Figure 10. Propositions 1–12 and hypothesis 13 in the Slate workspace.

We indicate that hypothesis 13 is a logical consequence of propo-
sitions 2, 3 and 5 by drawing a deductive inference from each of
these propositions to hypothesis 13 (Figure 11). Slate is then able to
confirm or refute the added inference. Slate does indeed confirm that
hypothesis 13 follows from the indicated propositions, by produc-
ing as evidence a formal proof which is added to the workspace as a
witness. Witnesses are objects in Slate that support or weaken infer-
ences. The double-plus symbol indicates that the witness confirms
the argument, an ability reserved only for formal proofs. If the in-
ference had been invalid, Slate might have produced a countermodel
demonstrating the inference’s invalidity.

Figure 11. Proof of {2,3,5} ` 13 in the workspace and verified by Slate.

Having proved∼ PM is an expression, it follows from 13 and 7 that:
14. ∼ PM ? ∼ PM is a sentence.

If we suppose that ∼ PM? ∼ PM is not true then by 11 the mirror
of ∼ PM is provable and thus by 6 ∼ PM? ∼ PM is provable. But
then, according to 13 and 14, ∼ PM? ∼ PM is true—which is in
contradiction with our supposition that ∼ PM? ∼ PM is not true.
And so it must be the case that ∼ PM?∼ PM is true. In other words,
as shown in Figure 12, the hypothesis that

15. ∼ PM ? ∼ PM is true.

follows from axioms 6 and 11 and hypotheses 12 and 13. Since ∼
PM?∼ PM is true, it follows from 6 and 11 that

16. ∼ PM ? ∼ PM is not provable.

and consequently, that there is a true sentence which cannot be
proved (Figure 13).

5.3 Informal Reasoning
When using Slate, the reasoner is able to construct arguments that
more closely resemble the uncertain and informal nature of every-
day, natural inference. Moreover, the user benefits from the system’s



Figure 12. Argument that ∼ PM ? ∼ PM is true.

automated evaluation and strength propagation mechanisms. To il-
lustrate these capabilities, we recreate an argument given by Sher-
lock Holmes in the Sir Arthur Conan Doyle’s short story The Adven-
ture of the Blue Carbuncle, wherein the famous detective discovers
some qualities of the owner of a lost hat. Upon inspection of the hat,
Holmes and Watson observe that it is lined with red silk, has a flat
brim with curled edges, and a hat-securer (for protecting against the
wind) that has fallen into disrepair (Figure 14).

Holmes’ observations of the hat are the result of inspection and,
therefore, for our purposes, are certain. Yet Holmes continues and ab-
duces, (i) from the observation that the hat has a flat brim with curled
edges, and (ii) his knowledge that such hats were in style three years
prior, that (iii) the hat is three years old.14 We add Holmes’ back-

14 We haven’t space available to explain abduction in Slate, and note only,
first, that abduction, whether in or or out of Slate, conforms, in general,
to the (deductively invalid) schema that from φ→ ψ and ψ one infers to
φ. Second, abduction in Slate is based more specifically upon the follow-
ing core concept: Let Φ be some set of formulas, and ψ some individual

Figure 13. Argument that there is a true sentence which cannot be proved.

Figure 14. Observed properties of the found hat.

ground knowledge to the Slate workspace and construct Holmes’
abductive inference (Figure 15), marking the inference as Abductive
(abbreviated as Abd), and we assign it the strength (1) Probable. Prob-
able is the weakest positive strength factor, indicating only that the
inference is more likely to be correct than incorrect. The strength of
the inference propagates toward the hypothesis. Each of the premises
are certain, and the inference is Probable, so the conclusion receives
the strength Probable.15

Holmes proceeds to infer that, although the owner of the hat was
well off at the time the hat was purchased, the fact that the owner
has worn the same (now tattered) hat for three years suggests that
he has suffered financial losses (Figure 15). Holmes would admit
that this conclusion is not an absolute certainty; several alternate hy-
potheses could explain why the owner wore this particular hat, e.g.,
that this hat held sentimental value, or that the owner rushed to leave
the house and this was the first hat he came upon. Alternate explana-
tions are commonplace in abductive reasoning and their plausibility
is the basis for ascribing strengths to abductive inferences.

That the owner had a hat-securer installed indicates, to Holmes at
least, that the gentleman possessed a high degree of foresight; but
that he failed to repair the elastic when it broke suggests he has less
foresight now than he did in years past. This, along with the hypoth-
esis that the owner has suffered financial difficulties, leads Holmes’
to conclude that the owner has fallen into moral decline (Figure 16).

6 SLATE’S EFFICACY
Setting aside the theoretical issues, one might ask if Slate effectively
assists humans in reasoning formally. To gauge this, an experiment
was conducted in which humans were required to use either the Slate
software or pencil and paper to solve reasoning problems.16 Results

formula. Suppose that there is an algorithm A able to ascertain whether or
not ψ can be proved from Φ (i.e., whether or not Φ ` ψ). Then automated
abductive reasoning consists in the running of a composite algorithm A?

that first runs A on a relevant pair (Φ,ψ), and if a negative verdict is re-
turned, searches for a formula α such that Φ∪{α} ` ψ. If such a formula
can be obtained, then it is (abductively) inferred. The reader should satisfy
herself that Sherlock Holmes can be plausibly viewed as running the A?

algorithm. This is as good a place as any to point out that all abductive
(and, for that matter, inductive) reasoning can be recast as enthymematic
deduction.

15 The propagation algorithms in Slate, frankly, are not straightforward, and
are beyond the relatively small amount of space we have available here.

16 None of these problems are of a type seen repeatedly in everyday reason-
ing, outside the formal sciences, or training therein. However, Slate has



Figure 15. Some intermediate conclusions drawn (abductively) from the
given facts about the hat.

Figure 16. An abductive argument contending that the owner of the missing
hat has fallen into ‘moral retrogression.’

demonstrate that humans perform far better with Slate than they do
on their own. We briefly describe the experiment herein.

Methodology. Forty undergraduates from Rensselaer Polytechnic
Institute served as participants. They formed two groups for each
condition of the experiment, with twenty subjects in each group. The
experiment was run on paper, as well as on two Apple Power Mac

been used with great success by humans tackling robust case studies in the
realm of intelligence analysis.

G5s with 20” flat screen monitors.

Design. The experiment was a univariate between-subject design
where subjects were told to complete a number of reasoning prob-
lems. The independent variable had two conditions: subjects either
solved the reasoning problems by hand using pencil and paper (the
control condition), or were allowed to use Slate to help solve the
problems. The salient dependent variable, and the metric for good
performance, was the participant’s solution accuracy.

Procedure. Subjects were given a series of reasoning problems.17

Each problem was of the following format. A number of premises
a1,a2, . . . ,an would be enumerated, followed by a prompt p (viz.,
“What logically follows?”). Subjects were told to provide an answer
to p and a corresponding justification for their answer. They were al-
lowed as much time as they needed to finish the problems, but were
not allowed any outside help or reference. Subjects in the paper and
pencil condition were talked through an example inference problem
and then allowed to begin their work on the problems in the exper-
iment. Subjects using Slate were shown a video of the system that
demonstrated various relevant features of the software as a sample
problem was solved (subjects had no prior exposure to Slate). Once
subjects felt comfortable with their task, they were allowed to begin.
Subjects were tested on three problems of varying difficulty.

Results. For brevity, we will only look at the most cognitively
difficult problem given to the subjects, one of Johnson-Laird’s king-
ace “illusory inference” problems [24, 11] (Figure 17).

Exactly one of the following statements is true:

• If there is a king in hand, then there is an ace in hand.
• If there isn’t a king in hand, then there is an ace in hand.

What can you infer from the above premise?
Provide an answer and a justification:

Figure 17. The king-ace problem (as presented to subjects).

The problem is notoriously difficult, as the solution defies (logi-
cally untrained) intuition. That is, naı̈ve intuition leads to the answer
that there is an ace in the hand, though it follows deductively that
there cannot be an ace in the hand.18 Individuals overwhelmingly

17 We haven’t the space to go through the problems used. In addition to the
one upon which we momentarily focus, we mention that the problem of
ascertaining what can be deduced from ‘It’s not the case that: If the cat
is black, it sits upon the mat.’ was investigated, and that the profound dif-
ficulty of this problem for even logically untrained but graduate-degree-
holding people is at the heart of a famous mental logic system (PSYCOP)
intended to model naı̈ve human reasoning [40]. The answer is: ‘That the
cat is black.’—and for that matter that ‘The cat doesn’t sit upon the mat.’
Armed with Slate, most subjects weren’t fooled.

18 To see why there cannot be an ace, recognize that one of the two condi-
tionals in the premise must be false, and a conditional is false only when
its antecedent is true and its consequent is false. If “if there is a king in the
hand, then there is an ace” is false, then there is not an ace, and if “if there
isn’t a king in the hand, then there is an ace” is false, then again, there is not
an ace. So regardless of which conditional is false, there cannot be an ace
in the hand. QED Of course, this proof notwithstanding, there’s no denying
that ‘There is an ace in the hand’ looks to be deducible. Johnson-Laird’s
explanation for this (of course) is rooted in mental models, but a simpler
explanation is simply that subjects perceive proof by cases to be appropri-
ate in this case. Finally, logically untrained subjects are notoriously bad at
deducing the truth of the antecedent and the falsity of the consequent from
a negated conditional, and there is no shortage of psychological explana-
tions as to why, from quarters other than the mental models camp.
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Figure 18. Average times and scores for the king-ace problem. While sub-
ject using Slate took more time to complete the task, their scores were
markedly higher.

succumb to their System 1 intuitions instead of coming to the correct
solution, and confirming it with a proof. Can Slate assist reasoners in
solving this problem correctly?

Subjects using Slate were much more likely to correctly answer
the king-ace problem. Using a single-factor ANOVA, we found that
there was a significant effect in the performance on the aforemen-
tioned problem when assisted by Slate (M=75%, SE=1.25) than
when not (M=11%, SE=3.86), F(1)=25.18, p < .005. Seventy-five
percent of subjects solved the problem correctly using Slate, while
only eleven percent managed to solve the problem without Slate’s
help (Figure 18). In addition, there was a significant effect in the per-
formance time between the two conditions on the king-ace problem.
Using another single-factor ANOVA, we found that subjects using
Slate took longer to complete the problem (M=7.31, SE=68.86) than
those using pencil and paper (M=4.5, SE=68.86), F(1)=9.39, p <
.005.

Discussion. The data shows that Slate helps users avoid failing
prey to “illusory inferences” (at least in the king-ace problem). As for
the response time differences, we note that upon reading the problem,
students quickly fall into the trap. Using only pencil and paper, they
do little but elaborate on their (flawed) initial reasoning. Using Slate,
they are presented with countermodels and are exposed to ‘correct’
reasoning. Processing these models, of course, takes some time.

This initial test produced encouraging results for Slate, but more
experiments are needed to definitively evaluate Slate’s efficacy at as-
sisting users (after all, it is difficult to make broad statements about
the system’s efficacy from one experiment). Further experimentation
is planned, and we anticipate that the results will demonstrate that
users of Slate easily overcome a number of well-known biases in hu-
man reasoning and decision-making [35, 36].

A final pair of discussion points: We anticipate that some readers
will find the king-ace problem deficient from either or both a prag-
matic and/or educational point of view. From the former perspective,
a reader might proclaim that in the real world of natural argumenta-
tion, no one would bother to tell someone two propositions if exactly
one of them is known to be false. Actually, this isn’t true. Every-
day reasoning is rife with examples in which a pair of propositions
is exclusively disjoined, and some conclusion is supposed to follow
therefrom. For example, we might be informed by Jones that either
a country from Europe will win the World Cup, or one from South

America will (but not both, obviously). Jones might then proceed to
argue that no matter which case obtains, the goalie on the victori-
ous team will not have secured glory for an Asian country. From an
educational point of view, a reader might express concern that Slate
users who solved king-ace didn’t need to explain the solution. In re-
sponse, our objective is first to give humans a machine partner able
to surmount difficult logical illusions (and the like). Later, we do in-
tend to investigate whether Slate can function as efficacious teaching
software.

7 FUTURE WORK

The development of Slate is ongoing. Below are a few of the en-
hancements that are currently in the works.

• Slate’s implementation is being refactored. The next version will feature
a new Java-based UI; separation of UI client from automated reasoning
back-end so that the latter can be located on high-performance servers; and
a ‘shared workspace’ so that multiple users can collaborate on analysis and
arguments.

• In addition to support for shared workspaces, we are exploring ways to
exploit Semantic Web technologies including RDF datastores and OWL
ontologies. RDF might be used as an interchange format for Slate models:
Slate could exchange models and hypothesis with other Semantic Web
systems.

• As already noted, Slates makes use of various model-finding technologies.
Unfortunately, extant model-finding systems are limited to finite domains.
Work is underway to expand the reach of Slate’s model-finding capabilities
to certain well-behaved infinite domains [42].

• Slate will soon include support for so-called “visual logics,” such as Ark-
oudas & Bringsjord’s VIVID.19 Visual logics combine diagrammatic and
symbolic reasoning for any computable image.
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