pyVivid; a Concrete Framework for Mechanized
Diagrammatic Reasoning

Nicholas Marton

Abstract

In 2007, the abstract semantic framework of Vivid was introduced by Arkoudas et al. [1]
for the purpose of mechanized heterogeneous natural deduction that combines symbolic and
diagrammatic reasoning. We introduce an implementation of the Vivid framework in the Python
programming language, pyVivid, the first such concrete framework capable of diagrammatic
reasoning. Furthermore, we present a protocol that allows for the extension of the pyVivid
library, opening up the possibility of the incorporation of diagrammatic reasoning to other
programmers.

1 Introduction

Diagrams are a pervasive and valuable tool extensively used in a wide variety of fields. For example,
there are numerous diagrams used in the field of statistics such as bar charts, pie charts and lorenz
curves [2]; in the field of physics, free-body, energy-level, vector fields and Minkowski [3] diagrams
are prevalent; in the biological realm, phylogenetic trees [4], ribbon diagrams and cell migration
diagrams are used to encapsulate a huge amount of variability succinctly and in an intuitive way;
circuit diagrams, process flow diagrams and phase diagrams are utilized throughout different fields of
engineering; diagrams are widespread in the field computer science where their usage ranges across a
broad set of subfields like firmware interface flowcharts in computer architecture, network topology
diagrams in computer networking, UML diagrams (which are used specifically to capture and intu-
itively explain more abstract features of larger software architectures [5]) and hash function diagrams
in cryptography among others; there are even algorithms that can be represented as graphical models
(and thus as diagrams) such as bayesian networks [6]. One of the major reasons of the prevalence of
diagrams across such a large amount of fields of study is the inherent ability of diagrams to capture
incomplete information. System containing incomplete information pervade across a multitude of
fields and furthermore, there is no general solution in dealing with them.

Roughly, there are two approaches to reasoning over incomplete information. In the first approach,
the objective is the quantification of indefiniteness; in this approach, probabilistic or fuzzy models
of uncertainty are usually used. This approach has been rigorously investigated with various proba-
bilistic models and it has even been shown that the theory of lower and upper previsions appear to
be sufficiently general to model the most common types of uncertainty [7]. The models used in this
approach are inherently limited by the amount of information from which their estimations are made.
The second, much less investigated, approach is the use of deductive reasoning. In this case, formal
conclusions about the incomplete information are shown to necessarily follow some set of premises
(most likely composed from the incomplete information itself). This approach is severely limited by
the lack of sound frameworks capable of dealing with incomplete information. Vivid aims to address
this problem, however, the framework itself provides no concrete implementation of the inference
mechanisms therein.

The Vivid framework, presented by Arkoudas et al. [1], is a domain-independent framework for
mechanized heterogeneous natural deduction that combines diagrammatic and symbolic reasoning

presented in the form of a family of denotational proof languages (DPLs). The framework also
provides a novel form structure, named system states, designed specifically to deal with incomplete
information in the form of undetermined diagrams. These named system states can also be re-
fined gradually as more information is obtain through the use of the inference rules provided in the
framework permitting deductive reasoning over incomplete information; an approach which needs
to undergo more investigation. Additionally, in the Vivid framework, the general inference mecha-
nisms introduced extend the assumption-base semantics of DPLs, allowing for the valid extraction of
information from diagrams and incorporation of sentential information into diagrams. While Vivid
seems like a good candidate for a deductive approach to reasoning over incomplete information as
well as a powerful tool for heterogeneous inference, no concrete implementation of the framework
has been provided until now. With the introduction of the pyVivid library, the functionality of the
Vivid framework is now freely available to programmers and logicians alike.

In the next section, we summarize the definitions and notations introduced in the original Vivid
framework. Then, we provide an overview of the formal semantics of the framework. In section 3,
we first describe why the Python programming language was chosen for the creation of the pyVivid
library, then we provide an overview of the available features of the pyVivid library and finally we
describe the process of extending pyVivid with arbitrary Python objects. Section 7?7 demonstrates
multiple usages of the pyVivid library in the context of proof verification. Finally, in section 7?7, we
discuss related and future work.

2 Vivid: The Formal Framework

The Vivid framework is substantial in its notation and definitions and intricate in its semantics.
Furthermore, as many of the components of the pyVivid architecture seek to directly encode the
definitions provided in Vivid, it is practical to understand the underlying framework before using the
pyVivid library. Therefore, we dedicate the following section to understanding the most applicable
notations, definitions and semantics of the framework with respect to the pyVivid library.

2.1 Definitions and Notation

To understand the formal semantics of the diagrammatic deductions introduced in Vivid, it is nec-
essary to understand the framework’s native definitions and notation. While the Vivid framework
introduces an extensive amount of different definitions and notational conveniences, some are more
applicable, with respect to the pyVivid library, than others. What follows is a description of the
more important and widely used definitions and notations therein:

e The set-theoretic difference between any two sets A and B, denoted by A\ B, is defined as
follows: A\ B={x € A|z ¢ B}.

e For any set A, Py;,(A) denotes the set of all finite subsets of A.
e For an arbitrary relation R C A; X -+ x A,, D(R) denotes the set {A;,..., A,}.

e An attribute structure is a pair A = ({A4;,..., Ax}; R) consisting of a finite collection of
sets Ayq, ..., A called attributes (where each A; has a unique label [; corresponding to it) and
a countable collection R of computable relations, with D(R) C {A,..., Ay} for each R € R.
When the relations of A are immaterial, we identify A with its attributes and write A as
ly : Ay, ..., 1+ Ay, where [; is the label of A;.

e An attribute system based on some attribute structure A is a pair S = ({s1,...,8,.};A)
consisting of a finite number n > 0 of objects s1,...,s, and the attribute structure .A.

e A state of a system S = ({s1,...,8.},{41,...,Ax}) is a set of functions ¢ = {dy,...,}
where each 0; is a function from {si,...,s,} to the set of non-empty finite subsets of A; (where
each ¢; is referred to as the state’s ascription into 4;), i.e.,

51‘ : {81, RN Sn} — szn(Az) \ 0.

As an additional convention, given a state o, attribute label I; and object s;, we write o(1;, s;)
for §;(s;) i.e., the value of the ascription ¢; for the object s; in the state o.

If an ascription ¢; maps every object to a singleton, that is, if |9;(s;)| = 1 for every j = 1,...,n,
0; is referred to as a valuation and a world w is a state in which every ascription is a valuation.

A state ¢’ of an attribute system S = ({s1,...,8.};0 : A1,...,lx : Ag) is an extension of
another state o, written o’ C o, iff o/(l;,s;) C o(l;,s;) for everyi=1,...,kand j =1,...,n.
A state ¢’ is a proper extension of a state o, denoted ¢/ C o iff o' C 0 and o [Z ¢’.

A list of m > 1 attribute-object pairs [(l1; 1), ..., (lm; Sm)] is homogeneous iff [} = --- =1,
and s; = - -+ = s, i.e., iff all m pairs are identical. Let oy,...,0, C o,m > 1.

A list of m attribute-object pairs L = [(I1;51),. .., (Im; Sm)] spans the states oy,..., 0, with
respect to o iff o;(l;,s;)) C o(l;,s;) for every i = 1,...m. Additionally, a list of m attribute-
object pairs L = [(I1;51), ..., (ln; $m)] properly spans o4, ...,0,, w.r.t. o iff for every sublist
of [iy - ip] of [i,...,m] such that [L(i1),- -, L(im)] is homogeneous, we have

[U 0ij<lij75ij)] - J<li175i1)-

J=1

Equivalently L does not properly span oq,...,om with respect to o iff for some such sublist
we have

oi (liy,80)U---Uay (L 8 ,) = 0(liy, 8iy)-

Let o1,...,0m,0’ T o,m > 1. We refer to ¢’ as an alternate extension of ¢ w.r.t.
01y -y Om, written Alt(o,{o1,...,0n},0') iff there is a list L = [(I1;51) - (ln; Sm)] properly
spanning oy, ..., 0, w.r.t. ¢ such that for every attribute [and object s we have

a(l,s)=o(l,s)\ U oi(l, s)

i1€Pos((l;s),L)

where, Pos(xz,L) ={i € {1,...,n} |z =z;}. We write AE({01,...,0,},0) for the set of all
alternate extensions of o w.r.t. o1,...,0,.

By vocabulary, we mean a first-order vocabulary ¥ = (C;R;V) consisting of a set of constant
symbols C; a set of relation symbols R; and a set of variables V.

An attribute interpretation of 3 into an attribute structure A = ({l; : Ay, ..., Iy : Ax}; R)
is a mapping [that assigns, to each relation symbol R € R of arity n:

1. A relation R! € R of some arity m, called the realization of R:
RIC Ay x-x A,

(where it is possible for m # n); and

2. a list of m pairs

[(Liys 1) -+ (i3)]
called the profile of R and denoted by Prof(R), with 1 < j, <n for each z =1,...,m.

A constant assignment is a partial function p from the constants C of some vocabulary X
to the objects {si,...,s,} of some attribute system S = ({s1,...,s,};A). We write Dom(p)
for the domain of a constant assignment p, i.e., the set of all and only those constant symbols
for which p is defined. A total constant assignment is written as p, with the hat indicating
that the mapping is total. Additionally, two constant assignments p; and py have a conflict
iff there is some ¢ € Dom(py) N Dom(p,) such that p;(c) # pa(c).

A variable assignment is a total function y from the variables V of some vocabulary ¥ to
the objects {s1,...,s,} of some attribute system S = ({s1,...,s,};.A).

A Formula F is defined over a vocabulary ¥ as usual, with a term ¢ being either a variable or
constant symbol.

A named state is a pair (0;p) consisting of a state ¢ and a constant assignment p.

A named state (¢'; p) is an extension of another named state (o; p), written (o’; p') C (o; p), iff
o' Coandp 2 p. Additionally, (0'; p') is a proper extension of (o; p), written (¢'; p') C (o; p),
iff (o’;p') C (o; p) and either o' C o or p/ D p. Further, (¢';p’) is a finite extension of (o;p),

denoted (o’; p') IZ (o p), iff (¢';p") C (03 p) and the difference p' \ p is finite.

A named state (o0;p) is a world iff o is a world and p is total.

An assumption base [is a finite set of formulae.

A context is a pair v = (f; (0; p)) consisting of an assumption base 5 and a named state (o; p).

We define pr y(F) to assign a truth value to a formula F, w.r.t. a given a world w (of
an attribute system S = ({s1,...,s,};.A)), along with a constant assignment p and variable
assignment Yy, as follows:

First the constants true and false are self-evaluating:

V([w; ,)/yltrue] = true and Vw)/ false] = false.

Next, consider an atomic formula R(ty,...,t,), where R is a relation symbol of arity n and
profile

[(lzmjl)? R (lzma]m)]
We have:

unknown if 3k € {1,...,m} . ty* 1

V(Ia;p)/x[RI(tl, .. tn)] = < true if RT(w (l“,t]pl’x), . ,w(l,m, tx);
false if ~RN(w(li,, t7X), ... w(ly,, 7).

where t”X 1 indicates that t”X is undefined (respectively ¢»X | indicates that ¢*X is defined).

We define [(4.5)/y(F) to assign a truth value to a formula F', given an arbitrary named state
(0;p) (of an attribute system S = ({s1,...,s,};.A)) along with a variable assignment x as
follows:

true V(Iw; oy [F'] = true for every world w C o

Iio.pyx(F) = < false V(I

w;p)/x [
unknown otherwise

F] = false for every world w C o

For any given F', p, and x, the basis of F' w.r.t. p, and y, denoted B(F,p,x) is a set of
attribute-object pairs (or an error token oo) defined on F by structural recursion. We present
only the clause of the definition dealing with atomic formulae:

B(R(h... 1), poy) = {{(lil;t;’f‘),...,(lim;tm‘)} if t9X | for every k € {1,...,m};
00

otherwise.

A world (w; p) satisfies a formula F w.r.t. a variable assignment y, denoted (w;p) k=, F, iff

V{w;p)/X[F] = true.

A world (w; p) satisfies a named state (o;p), denoted (w; p) = (o3 p), iff (w;p) C (o; p).

A world (w; p) satisfies a context v = (5; (0; p)) w.r.t. a given variable assignment x, denoted
(w; p) Ex v iff (w; p) =y F for every F' € 5 and (w; p) = (0 p).

A context v entails a formula F, denoted v = F iff (w;p) =, v implies (w;p) =, F for
all worlds (w; p) and variable assignments .
/

A context vy entails a named state (¢'; p'), denoted v |= (¢’; p'), iff for all worlds (w; p) and
variable assignments y, we have (w;p) = (0’; p') whenever (w;p) =, 7.

o0
Let (1;01)s- -y (Om; pm), (0’5 0)) T (05 p),m > 1. We say that (¢'; p') is an alternate exten-
sion of (o;p) w.r.t. (o1;01), .-+, (Om; pm), denoted

Alt((o;p), {(01501), - - -, (Fm3 pm) }, (075 0)),

ifft Dom(p') = Dom(p,) U ---U Dom(p,,) and there is a subset S C {1,...,m} such that:

1. p' conflicts with p; iff i € S; and
2.if S #{1,...,m} then Alt(o,{o; | i € {1,...,m}\ S},0’), while if S = {1,...,m} then

o =o.

Suppose that (o1;p1),...,(0m; pm) T (0;p) and let § be any assumption base. We say that

(o3 p) entails (015 p1), ..., (Om; pm) W.r.t. 8, denoted (o;p) kg {(o1;p1), -+, (Om; pm) }, iff for
every (o’; p') such that

Alt((o;p), {(a1;p1)s -, (Tms pm) }, (05 0)),

the following holds for all x:

I(G',;P,)/X (F/\ F) = false.

€B

2.2 Formal Semantics

The two syntactic proof categories of the Vivid framework are sentential and diagrammatic; sentential
deductions are used to derive formulae, while diagrammatic deductions derive diagrams. The letters
D and A are used to denote sentential and diagrammatic deductions respectively. The formal
evaluation semantics of the framework are given by axioms and rules establishing judgments of the
following form:

YD~ F
and
A~ (a3p),
read as:
“In the context v, deduction D (A) derives F' (respectively, (o;p))”.

Although both sentential and diagrammatic deductions are included in the framework, most of the
deductions that fall into the sentential category are straightforward generalizations of the standard
NDL semantics given in [8]. The only sentential forms not presented in N'DL are observe, cases
by, and A; D. The semantics of the observe form are as follows:

(B; (o3 p)) - observe F ~» F [Observe]

provided that (4., (F) = true for all x

Additionally, we briefly mention the sentential-to-sentential form of case reasoning. In the
sentential-to-sentential form, first a disjunction F} V F3 is noted to hold, then a formula G is shown
to be entailed either way, entitling us to conclude G. The sentential-to-sentential form is captured
syntactically as a rule application:

cases [V F5, F1 = G, F, = G

and the semantics of the rule application is as follows:

(5U{F1\/FQ,F1ﬁG,FQ@G}ﬁ(Ojﬂ))"C&SGS F1VF2,F1$G,F2:>G’\/>G

The semantics of cases by and A; D (as well as the semantics of the diagrammatic forms of the
framework) are given below in Figures 1 and 2 respectively.

(BU{F1,...,Fx};(o1501)) F Dy~ F

(BU{F1,...,Fc};(on;p,)) E Dy~ F

(BU{Fy,...,Fx};(o;p)) - cases by, ..., Fyx: (01;p1) — D1 |

[C5]

prOVided(J; p) ”F{Fl ,,,,, Fi} {(Ul; pl)a cey (Un; pn)}

Figure 1: The semantics of diagrammatic-to-sentential case reasoning.

[Thinning

(BU{F1,...,Fn};(o;p)) F (¢/;0") by thinning with Fy,..., Fp~ (¢/;p)
provided(o; p) by .. r, 3 (075 0)

[Widening

(B; (o5 p)) = (o'; p') by widening ~ (o”; p")
provided(o; p) C (0’5 p')

[Absurdity

(BU {false}; (a5 p)) F (05 ") by absurdity ~ (o'; ")

[Diagram-Reiteratioh

(B; (o5 p)) = claim (a3 p) ~ (o5 p)

(BU{F1,..., Fr};(01501)) A1~ (075 0")

(ﬂU{Flv"'ka}§(Un§pn))'_ARM(o—l?p/) [Cl]
(BU{F1,...,Fy};(0;p)) F-casesbyFy, ..., Fy: (o1;01) — Ar] -+ | (on;p,) — An~ (d';5p)
provided(o; p) by .. mey {(01301),- -+, (Ons pn)}

BU{RIV F, Fi}i(oip)) F A~ (0hip") (BU{FI VS, Fa}i(oip)) EAs~ (0%ip") [cy]
(ﬁU {F1 VFQ}; (O';p)) FcasesF) V Fy: Fy — Aq ‘ Fy — Ag ~» (O'/;p/)

Bi(gip)FD~F (BU{F};(o3p)) FA~ (0'ip") [D;A]
(B (o50)) F D; A~ (075 p")

Biloip)) FA~ (0%3p) (Bi(asp))ED~F (A D]
(B; (o5p)) FA; D~ F

Bi(gip) A1~ (o1;p) (Bi(onsp)) Ao~ (02ip9) [A;A]
(B; (03p)) = Ar; Az~ (025 p3)

Bilosp)EDi~ 1 (BU{Fi}i(o3p) EDe~ Fy D D]
(8; (0;p)) F D1; D2~ F

(BU{3z . F Flz/z]};(0;p) F Alz/w]~ (0';p) [EI/A]

(BU{Z3z.F};(0;p)) - pick-witnessw for 3z . F A~ (o’;p)
providedz is fresh

Figure 2: The formal semantics of diagrammatic deductions.

3 pyVivid: An Implementation

There were a few key considerations that went into the inception of the architecture for the implemen-
tation of the Vivid framework. These considerations ranged from the more immediate considerations
like “which programming language should be used for the implementation” to the more long term
considerations like “what design paradigms should be used to ensure that the library can be contin-
uously developed and modified to provide new and additional support and optimizations”. These
questions inspired reflection over many different factors, but after a large amount of deliberation,
a few select paradigms were chosen to guide the development of the pyVivid architecture. Among
them, the most important were ease of use, extensibility and stability. In what follows, we dive
deeper into the paradigms used and choices made behind the implementation of pyVivid. Addition-
ally, we provide an overview of the features included in the pyVivid library and explain how other
programmers can easily extend the library itself for added functionality.

3.1 An Overview of Available Features

The pyVivid library provides a concrete and fully tested implementation of the Vivid framework
with an emphasis on both the semantic forms that fall under the diagrammatic category and the
structures that allow for the reasoning over incomplete information. As the library is substantial in
size, an overview of the features that it provides is a useful summary to review before diving into
the library. In this section, we provide an overview of the various features provided in pyVivid along
with high level descriptions of the classes within.

3.1.1 Supported Types

At the heart of the pyVivid library is the ValueSet class. The ValueSet class provides support for
many of the Python programming language’s built-in types (e.g., integers, floats, longs, strings, etc.)
as well as for other objects. It is through the instantiations of the ValueSet class (henceforth referred
to as “ValueSets” or “ValueSet objects”) that all of the underlying functionality of the library is
provided; these objects act as containers for both the possible values of attributes and the values of
the ascriptions of objects in named system states and are pervasive throughout many other areas of
the library. In Python terminology, ValueSet objects are attributes of many of the other classes in
the pyVivid architecture. Additionally, the ValueSet class has the ability to be extended to include
arbitrary objects through the vivid object extension protocol explained in the following section. The
Point class along with the LineSegment class are two such examples of this object extension protocol
put into practice.

3.1.2 Attributes and Relations

Instances of the Attribute and Relation classes (henceforth referred to as Attributes or Attribute
objects and Relations or Relation objects respectively) form the building blocks of the more advanced
structures used in the pyVivid library. Each Attribute object has an associated label which serves
as the object’s alias; these labels are used in numerous other locations as well, like in the creation of
the ascriptions of system states and named system states. Relation objects are equally important;
the definitions of the Relation objects are used to create the expressions evaluated (after a few
substitutions) when determining the truth value of a given formula; the assignment of a truth value
to a formula is one of the most pivotal components of the pyVivid library as almost all of the
diagrammatic inference rules make use of the assignment of truth values to formulas in one way or
another.

3.1.3 Attribute Structures and Systems

The AttributeStructure class and AttributeSystem class in the pyVivid library implement the at-
tribute structure and attribute system structures presented in the Vivid framework respectively. More
formally, each instance of the AttributeStructure class (henceforth referred to as an “AttributeStruc-
ture” or “AttributeStructure object”) is a pair A = ({Ai,..., Ax}; R) consisting of a set of unique
Attribute objects {A,..., Ax} and a set of unique Relation objects R = {Ry,..., R;}; these At-
tributeStructure objects are used to create interpretations that enable us to interpret first-order
signatures into named system states in the case of incomplete or missing information. Each instance
of the AttributeSystem class (henceforth referred to as an “AttributeSystem” or “AttributeSystem
object”) is a pair & = ({s1,...,5,};.A) consisting of a finite number n > 0 of objects s1,...,s,
(maintained as a list of strings in Python terminology) and an AttributeStructure object A. These
AttributeSystem objects are required for the creation of instances of the State and NamedState
classes; two classes required by the pyVivid library to perform diagrammatic deduction.

3.1.4 Vocabularies

The Vocabulary class provides the pyVivid library with first-order vocabularies consisting of a set of
constant symbols, a set of relation symbols and a set of variables. The instances of the Vocabulary
class, Vocabulary objects, are used in the creation of both constant and variable assignments as well
as in the creation of attribute interpretations. In fact, the Vocabulary object to which a constant
assignment holds a reference is even propagated to other objects that make use of the constant
assignment like instances of the NamedState and Context classes. As all conceivable use cases
of pyVivid are for the verification of a proof (at least while Vivid remains a type-a DPL), the
library actively enforces the use of a single Vocabulary object throughout all objects involved in the
verification process in an effort to reduce verbosity and increase ease of use. To that end, one can
assume that a reference to the underlying Vocabulary object used during proof verification is never
broken regardless of the intermediate functions being called or objects being created.

3.1.5 Constant and Variable Assignments

As mentioned in the previous section, formally, a constant assignment is a partial function p from
the constants C of some vocabulary ¥ to the objects {si,...,s,} of some attribute system S =
({s1,...,sn};A) and a variable assignment is a total function y from the variables V of some vo-
cabulary ¥ to the objects {si,...,s,} of some attribute system S = ({s1,...,5,};.A). The Con-
stantAssignment and VariableAssignment classes implement these definitions respectively. Instances
of the ConstantAssignment and VariableAssignment classes (referred to as ConstantAssignments or
ConstantAssignment objects and VariableAssignments or VariableAssignment objects respectively)
act as a single p or x. These objects also hold a reference to the vocabulary (represented by a Vocab-
ulary object) which they are defined over; in this way, ConstantAssignments and VariableAssignment
objects are kept up-to-date about any changes made to the vocabulary (e.g. a constant symbol being
added).

3.1.6 Named States

Instances of the NamedState class (henceforth referred to as NamedStates or NamedState objects) are
the principal structure for modeling incomplete information in the form of undetermined diagrams.
Each NamedState object is a pair (o;p) consisting of an AttributeSystem object S (along with a
State object o of that AttributeSystem which is represented as a base class to the NamedState)
and an instance of the ConstantAssignment class p. NamedState objects provide functionality for
the more central operations involved in the semantics of diagrammatic deductions like determining
entailment of other NamedState objects w.r.t. an assumption base and determining satisfaction

of a given formula, named state, or context (provided that the NamedState object performing the
computation is a world in the case of determining satisfaction). They also come equipped with the
ability to generate the alternate extensions of themselves w.r.t. other NamedState objects as well as
the ability to determine if a NamedState is a valid alternate extension of another. NamedState objects
are also a principle component of the Context class, another class central to the library’s ability to
perform diagrammatic deductions. Additionally, NamedStates are capable of adding new objects
(optionally mapped to a corresponding constant symbol in the underlying constant assignment) and
ascriptions of those objects at any time; a useful feature for when more information about a particular
diagram is learned and a constant symbol must dynamically come to denote an object during the
course of deduction.

3.1.7 Attribute Interpretations

To interpret first-order languages into system states with pyVivid, it is necessary to create an instance
of the Attributelnterpretation class first (henceforth referred to as an Attributelnterpretation or an
Attributelnterpretation object). An attributelnterpretation compiles atomic formulae over system
objects via profiles into atomic formulae over selected attribute values of (some of) those objects. The
profiles specified dictate which attributes of which objects are selected in the compilation process.
The Attributelnterpretation class is central to the pyVivid library; it is a prerequisite to almost every
function acting to implement the semantics of diagrammatic deduction as it allows the assignment
of a truth value to a formula. Each Attributelnterpretation object stores a mapping of a Vocabulary
object into an AttributeStructure object by creating a table with the pertinent information of the
interpretation, including the profiles (which are specified at the time of construction). They also
hold a reference to the Vocabulary object; this way, Attributelnterpretation objects are kept up to
date with respect to any modifications made to the underlying Vocabulary object.

3.1.8 Formulae and Assumption Bases

Instances of the Formula class (referred to as Formulae or Formula objects) store a set of terms
and are defined over some Vocabulary object and thus store a reference to that specific Vocabulary.
Formula objects are used during the interpretation process where first-order languages are interpreted
into system states; to that end, each Formula object can perform a function to assign a truth value to
itself (with respect to an Attributelnterpretation object, NamedState object and VariableAssignment
object). A more complete description of the truth value assignment process can be found in chapter
10 of Appendix ??. The instances of the AssumptionBase class (referred to as AssumptionBase
objects or AssumptionBases) are simply an implementation of the assumption base structure defined
in the Vivid framework; that is, they are a finite set of Formula objects. AssumptionBases are
one of the two components required to create a context and as such they play a big part in the
implementation of the semantics of diagrammatic deduction.

3.1.9 Contexts

Context objects, instances of the Context class, are ubiquitous throughout the implementation of the
semantics of diagrammatic deductions. Each Context objects represents a single context structure;
a pair v = (f3; (03 p)) consisting of an assumption base /5 (given by an AssumptionBase object) and
a named state (o; p) (given by an NamedState object). In an effort for all objects used in the proof
verification process to remain consistent, one caveat is imposed during the creation of a Context
object: the underlying Vocabulary of the AssumptionBase object must be the same Vocabulary as the
underlying Vocabulary object of the NamedState object. As mentioned in section 2, the evaluation
semantics of the Vivid framework requires the establishment of judgments of the following form:

“In the context v, deduction D(A) derives F (respectively, (o;p))”

10

Thus, every function corresponding to some rule of diagrammatic deduction takes as a parameter
a Context object. Additionally, Context objects are capable of determining whether or not a given
Formula object or NamedState object is entailed by the Context object itself; in fact these functions
aid in the process of performing diagrammatic deductions in multiple places.

3.1.10 Diagrammatic Deductions

The pyVivid library provides direct implementations for each the rules of diagrammatic deduction
of the Vivid framework. Specifically, the rules of [Thinning|, [Widening], [Absurdity|, [Diagram —
Reiteration], [Cy], [Cs] and [Cs] in figures 1 and 2 all have corresponding functions in the “in-
ference_rules” module (where [C4], [C2] and [C3] correspond to “diagrammatic_to_diagrammatic”,
“sentential_to_diagrammatic” and “diagrammatic_to_sentential” respectively). Performing any of the
four types of deduction sequencing rules, [D; D], [D; A], [A; D] and [A; A] is easily accomplished by
simpling proceeding sequentially from the intermediate result as the proof verification is done in a
procedural way; one can simply verify a step holds and thread the conclusion into the next function
call. It is worth mentioning that pyVivid does not provide a native automated theorem prover for
purely symbolic expressions. Purely symbolic expressions, however, are contained solely by the defi-
nition attribute of Relation objects. For this reason, pyVivid allows for the exporting and importing
of the definitions of a Relation object or the set of Relation objects contained in an AttributeStruc-
ture object (formatted in S-expression notation). With this functionality, the [E1/A] rule of figure
2 can be accomplished by exporting a given Relation object (corresponding to some formula F' via
an attribute interpretation), picking a valid witness through the use of an external theorem prover,
then importing the witness back into a Relation object. Additional functions are provided for the
[Observe] and [Sentential — to — Sentential] (the last of the 4 types of case reasoning) rules as well
as they are performed with respect to named states.

References

[1] Konstantine Arkoudas and Selmer Bringsjord. Vivid: An Al Framework for Hetero-
geneous Problem Solving. Artificial Intelligence, 173(15):1367-1405, 2009. The url
http://kryten.mm.rpi.edu/vivid/vivid.pdf provides a preprint of the penultimate draft only. If
for some reason it is not working, please contact either author directly by email.

[2] Joseph L. Gastwirth. A general definition of the lorenz curve. Econometrica, 39(6):1037-1039,
1971.

[3] L. Parker and G. M. Schmieg. A Useful Form of the Minkowski Diagram. American Journal of
Physics, 38:1298-1302, November 1970.

[4] Walter M Fitch, Emanuel Margoliash, et al. Construction of phylogenetic trees. Science,
155(3760):279-284, 1967.

[5] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on uml class diagrams.
Artificial Intelligence, 168(1):70-118, 2005.

[6] Michael Irwin Jordan. Learning in graphical models, volume 89. Springer Science & Business
Media, 1998.

[7] Peter Walley. Measures of uncertainty in expert systems. Artificial intelligence, 83(1):1-58, 1996.

[8] Konstantine Arkoudas. Natural deduction language. 2004.

11

